

# Beta

The Forgotten Middle Child of Valuation ABCs

Yoram Beck, MA(Econ), CBV, CFA Principal, Cohen Hamilton Steger & Co. Inc.

Jacob Martin, CPA CA CBV Principal, Cohen Hamilton Steger & Co. Inc.

June 12, 2025
Presented at the CICBV 2025 Congress
Not for Circulation

#### DISCLAIMER AND RESTRICTIONS

The views expressed in this presentation are those of the presenters and do not necessarily reflect the views of Cohen Hamilton Steger & Co. Inc.

The analyses, comments and considerations contained herein must be considered as a whole and in context of what is being discussed. Selecting portions thereof could lead to a misleading view of the conclusions reached.

The examples provided herein are simplified and may not be applicable in all contexts.



#### PRESENTATION OVERVIEW

- 1. Overview of Betas
- 2. Application of Betas
- 3. Other Considerations
- 4. Case Study





#### PRESENTATION OVERVIEW

### 1. Overview of Betas

- 2. Application of Betas
- 3. Other Considerations
- 4. Case Study





### 1. Overview of Betas – What is a Beta?

- Beta measures a security's sensitivity to market movements.
- Demonstrates correlation between a security's returns relative to overall market returns.
  - $\beta$  = 1: same volatility as the market.
  - $\beta > 1$ : more volatile than market  $\rightarrow$  higher risk & potential return.
  - $\beta$  < 1: less volatile than market  $\rightarrow$  lower risk & return.
- Beta measures only a stock's systematic risk and not its unsystematic risk.



### 1. Overview of Betas – How is Beta Used?

• Used as part of a capital asset pricing model (CAPM) to calculate a company's cost of equity:



- Typically used as a proxy for the risk of an industry in which the subject company operates.
  - Betas used in a build-up approach if applying an industry risk premium.
- Smaller companies tend to have higher Betas.



# BETA – THE FORGOTTEN MIDDLE CHILD OF VALUATION'S ABCS

### 1. Overview of Betas – Beta Sources

## Where do you source your Betas from?

- a. S&P CapitalIQ
- b. Bloomberg
- c. Damodaran
- d. Kroll Cost of Capital Navigator
- e. Calculate Myself
- f. Other



### 2. APPLICATION OF BETAS – HOW TO CALCULATE BETA?

 Commonly measured through an Ordinary Least Squares (OLS) regression as follows:

$$\beta_i = \frac{Cov(ri, rm)}{Var(rm)}$$

- It is more accurate to capture total returns or excess returns than price returns.
- OLS may underestimate betas for small companies and a Sum Beta may be more accurate.
- Betas should come from the same source to be comparable.
- The asset returns and market index should have consistent currencies.



### 2. APPLICATION OF BETAS – REGRESSION STATISTICS

#### **T-Statistic**

- Measures significance of Beta coefficient (how greatly it differs from zero at a given confidence level)
- Does NOT measure accuracy of the Beta itself
- Rule of thumb is t-stat > 2.0.

### **R-Squared**

- Measures "goodness of fit" of the regression line
- Ranges from 0 (no relationship between variable) to 1 (perfect correlation market explains stock return movements)
- Typically not close to 1 as there are other factors that impact a company's returns.

#### **Standard Error**

- Measures sampling error (i.e., standard deviation of a return)
- Shows how much individual observations differ from the predicted values, reflecting the reliability of the regression estimate
- Look at this in relation to estimate beta.



### PRESENTATION OVERVIEW

- 1. Overview of Betas
- 2. Application of Betas
- 3. Other Considerations
- 4. Case Study



#### 2. APPLICATION OF BETAS – KEY INPUTS

#### **Market Proxy**

 Index against which the volatility of the individual security is measured. Should be a diversified market index (i.e., not too concentrated in a single industry).



#### **Historical Time Period**

• Time period over which Beta is measured, which is typically between 2 and 5 years.



#### Time Interval

• The frequency of return data ranges (e.g., annual, quarterly, monthly, or daily). Must strike a balance between a sufficient number of observations and avoiding "noisy" data.





### 2. APPLICATION OF BETAS – WHICH MARKET INDEX TO USE?

| Index                                     | Best For                            | Advantages                                        | Disadvantages                             |  |
|-------------------------------------------|-------------------------------------|---------------------------------------------------|-------------------------------------------|--|
| S&P 500                                   | US large-cap, global exposure       | Diversified, widely used, reliable data           | Less useful for non-US or small-cap firms |  |
| Russell 2000                              | US small-cap stocks                 | Captures small-cap volatility, domestic focus     | High volatility, not global               |  |
| NASDAQ Composite                          | Tech/growth-focused firms           | Good for tech Beta, high growth correlation       | Overconcentration in tech                 |  |
| MSCI World                                | Global multinationals               | Broad developed market exposure, global relevance | Lacks emerging market representation      |  |
| MSCI EM                                   | Emerging markets                    | Reflects EM risk and volatility                   | Less diversified, higher volatility       |  |
| FTSE 100                                  | UK firms or UK investor perspective | Reflects UK blue chips, GBP-relevant              | Multinational skew, less diversified      |  |
| TSX Composite                             | Canadian companies                  | CAD-focused, local relevance                      | Sector-concentrated (e.g., energy, banks) |  |
| Local Index (e.g. Nikkei, DAX,<br>Sensex) | Region-specific firms               | Matches country-specific risk factors             | Limited international comparability       |  |

2. APPLICATION OF BETAS – LOOKBACK PERIOD

## When calculating Betas, what lookback period do you typically use?

- a. Less than 2 Years
- b. 2 Years
- c. 3 Years
- d. 5 Years
- e. Greater than 5 Years

### 2. APPLICATION OF BETAS – LOOKBACK & TIME PERIOD

#### Key Considerations Include:

#### 1. Liquidity of the Stock

- Illiquid/small-cap stocks: Weekly or monthly data reduces the effect of stale prices or bid-ask bounce.
- Highly liquid/large-cap stocks: Daily data is more reliable and offers higher frequency.

#### 2. Environment Volatility

- In calm markets, monthly or weekly data provides stable estimates.
- In volatile or rapidly changing markets, daily data may capture risk shifts more quickly (but be noisy).

#### 3. Purpose of the Beta

- Valuation (CAPM, DCF): Monthly or weekly Beta over a 3–5 year period is typically recommended for stability.
- Portfolio risk management or VaR: Daily Beta over 1–2 years for precision and reactivity.



2. APPLICATION OF BETAS – TIME INTERVAL

## When calculating Betas, what time interval do you typically use?

- a. Daily
- b. Weekly
- c. Monthly
- d. Annual
- e. Other



#### 2. APPLICATION OF BETAS – NORMALIZATION OF BETAS

### Consider the following:

### 1. Use a longer lookback period

• Simple and transparent, reduces distortion from short-term volatility, but may underreact to structural shifts post disruption

### 2. Adjust the Beta using a Regression with dummy variables

• Statistically sound, uses a broader history, requires statistical knowledge

### 3. Blended Betas – i.e., pre and post the significant event

Allows isolation of structural shifts but is highly subjective



#### PRESENTATION OVERVIEW

- 1. Overview of Betas
- 2. Application of Betas
- 3. Other Considerations
- 4. Case Study



### 3. Other Considerations – Equity vs Asset Betas

# Levered

### **Equity Betas**

- Measures total systematic risk (business + financial).
- Used to calculate cost of equity (reflects risk to equity shareholders).
- Sensitive to company's debt/leverage (higher leverage = greater risk).

# Unlevered

#### **Asset Betas**

- Excludes effects of debt (purely business risk).
- Independent of capital structure and tax rates.
- Used as a step in re-levering beta.





### 3. Other Considerations – Un-levering and Re-levering Betas

• Necessary when trying to make an apples-to-apples comparison of Equity Betas, because they are impacted by a firm's capital structure.



#### Hamada

- Fixed amount of debt
- Tax rate impactsBeta
- Assumes no risk in tax deduction

#### Harris-Pringle

- Fixed percentage of debt
- No impact of taxes
- Requires debtBeta

#### Miles-Ezzell

- Fixed percentage of debt
- Tax rate impacts beta
- Requires debtBeta



### 3. Other Considerations – Full-Information vs Pure Play Beta

1. A **Pure Play** approach estimates Beta by examining publicly traded companies that are focused on a single line of business (i.e., a pure play)

- 2. A **Full Information** approach estimates Beta by using a combination of information, such as financial statements, business segment details, revenue by geography or business line and other qualitative and quantitative risk factors.
  - In some cases, it combines publicly traded companies' Betas weighted by the companies' revenue or EBITDA contribution.

# BETA – THE FORGOTTEN MIDDLE CHILD OF VALUATION'S ABCS

### 3. Other Considerations – Full-Information vs Pure Play Beta

| Aspect        | Full Information Approach                                                                                                                                                                               | Pure Play Approach                                                                                                                                                                                                   |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Advantages    | <ul> <li>Reflects diversified operations (good for conglomerates)</li> <li>Customizable based on true economic exposure</li> <li>More robust for private companies with mixed business lines</li> </ul> | <ul> <li>Simple and intuitive</li> <li>Ideal for single-industry projects or startups</li> <li>Easier to explain and apply in discounted cash flow models</li> </ul>                                                 |  |
| Disadvantages | <ul> <li>Requires extensive data and reliable segment info</li> <li>Complex to implement; subjective weighting and assumptions</li> <li>Time-consuming to build and justify in practice</li> </ul>      | <ul> <li>Hard to find truly "pure" comparables</li> <li>Risk of mismatch if comps have different operating/geographic risk</li> <li>Bias if the comparable firm has unusual leverage or market perception</li> </ul> |  |
|               | 1                                                                                                                                                                                                       |                                                                                                                                                                                                                      |  |

### 3. Other Considerations – Full-Information vs Pure Play Beta

- 1. A **Pure Play** approach is most suitable for:
  - Estimating the cost of capital for a project in a specific industry; or,
  - A new business venture or start-up in a niche market.

- 2. A **Full Information** approach is most suitable for:
  - Valuing a diversified private company, unless comparables are similar
  - Infrastructure project with multiple risk exposures
  - M&A involving multi-segment business unit



## BETA – THE FORGOTTEN MIDDLE CHILD OF VALUATION'S ABCS

3. Other Considerations – Adjusting Historical Betas to Forward Betas

- 1. Re-Levering Industry or Peer Betas: un-levering and then re-levering the comparable company Betas using the future expected capital structure.
- **2. Blend Historical and Forward Looking Betas (Bayesian Adjustment):** weighting of a historical Beta and a future Beta, with the future Beta being an industry Beta as a proxy for future expectations.
- **3. Implied Beta from the Market:** estimate the observed cost of equity from the market (i.e., from a stock price or DCF) and then back into the Beta.
- 4. Machine Learning: can improve the calculation of Betas.



### 3. Other Considerations – Machine Learning

- 1. Modelling time varying Beta: can capture how a stock's Beta evolves over time in response to changing market conditions.
- 2. Capturing Non-Linear Relationships: Beta assumes a linear relationship between asset and market returns. ML models can detect non-linearities and asymmetric responses (e.g., downside risk bias).
- **3. Feature-Enhanced Beta Estimation:** instead of solely relying on market returns, additional factors such as volatility, trading volume and interest rates, macroeconomic factors and sentimental factors can be included
- 4. **Predictive / Forward Betas:** ML can be used to forecast future Beta based on based on trends in firm fundamentals, market sentiment, or macro trends



### 3. Other Considerations – Machine Learning

| Advantages |                                                   | Disadvantages                                        |  |  |
|------------|---------------------------------------------------|------------------------------------------------------|--|--|
| • Capt     | tures non-linear, dynamic, and asymmetric         | Requires large, clean datasets                       |  |  |
| • Can i    | integrate diverse inputs beyond price returns     | Results can be less interpretable (black box models) |  |  |
| • Adap     | pts better to changing regimes                    | Risk of overfitting if not cross-validated properly  |  |  |
|            | oles forward-looking and predictive Beta<br>eling | Requires ML expertise and computing power            |  |  |

#### PRESENTATION OVERVIEW

- 1. Overview of Betas
- 2. Application of Betas
- 3. Other Considerations
- 4. Case Study



### 4. Case Study – Background Facts

### Consider the following background facts:

- 1. Preparing valuation for Cool Bean Vanilla ("CBV") Ice Cream Factory
- 2. Private ice cream manufacturer located in Ontario
- 3. Revenue of \$800 million
- 4. Using a CAPM approach to estimate the cost of equity, which requires a Beta.





### 4. Case Study – Comparable Companies

| Company            | Revenue<br>(\$mm)        | % of Revenue in Ice<br>Cream Manufacturing | Monthly Trading Volume (mm) |  |
|--------------------|--------------------------|--------------------------------------------|-----------------------------|--|
| Scoops & Snacks    | 500                      | 35%                                        | 4.3                         |  |
| Sprinkles+         | 1,100                    | 90%                                        | 8.1                         |  |
| Colossal Cone      | 88,000                   | 100%                                       | 100.3                       |  |
| La Meilleure Glace | 700                      | 95%                                        | 2.8                         |  |
| Mom & Pop Shoppe   | om & Pop Shoppe 550 100% |                                            | 0.06                        |  |
| Nice Cream         | 980                      | 85%                                        | 3.5                         |  |

### 4. CASE STUDY – COMPARABLE BETAS

| Company            | OLS Beta | Sum Beta | Debt-to-Equity | Credit Rating |
|--------------------|----------|----------|----------------|---------------|
| Sprinkles+         | 0.66     | 0.71     | 25%            | В             |
| La Meilleure Glace | 0.58     | 0.62     | 38%            | A             |
| Nice Cream         | 0.86     | 0.88     | 14%            | ВВ            |

### 4. Case Study – Un-levering of Betas

| Company            | Sum Beta | Debt-to-Equity | Debt Beta | Unlevered Beta |
|--------------------|----------|----------------|-----------|----------------|
| Sprinkles+         | 0.71     | 25%            | 0.37      | 0.64           |
| La Meilleure Glace | 0.62     | 38%            | 0.32      | 0.54           |
| Nice Cream         | 0.88     | 14%            | 0.36      | 0.82           |
| Average            | 0.74     | 26%            | 0.35      | 0.67           |

Harris-Pringle Formula for Un-levering Beta:

$$\beta_{U} = \frac{\beta_{L} + \left(\frac{\underline{D}}{\underline{E}}\right) \times \beta_{D}}{1 + \left(\frac{\underline{D}}{\underline{E}}\right)}$$



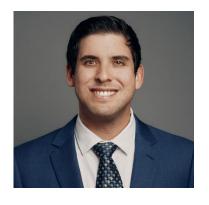
### 4. Case Study – Re-Levering Beta

### 1. Key Assumptions

- Un-levered Beta of 0.67
- Debt-to-Equity of 26%
- Credit Rating of BBB (Debt Beta of 0.35)
- 2. Harris-Pringle Formula for Re-levering Beta:

$$\beta_L = \beta_U + \left(\frac{D}{E}\right) \times (\beta_U - \beta_D)$$

- 3. Re-levered Beta = 0.75
- 4. Consideration of Other Adjustments (e.g., Blume, Bayesian, Vasicek)




#### Presenters



#### Yoram Beck, MA(Economics), CBV, CFA

- ybeck@cohenhamiltonsteger.com 416-304-7040
- Principal, Cohen Hamilton Steger & Co. Inc., Toronto
- Business Valuations, Damages Quantification, Forensic Investigations



#### Jacob Martin, CPA, CA, CBV

- <u>jmartin@cohenhamiltonsteger.com</u> 416-304-7033
- Principal, Cohen Hamilton Steger & Co. Inc., Toronto
- Business Valuations, Damages Quantification, Forensic Investigations

